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ABSTRACT

Selection of feature pattern gathered from the observation of the RNA sequencing data (RNA-seq) are not all equally informative
for identification of differential expressions: some of them may be noisy, correlated or irrelevant because of redundancy in Big-Data
setfs. Variable selection of feature pattern aims ot differential expressed gene set that is significantly relevant for a special task. This issues
are complex and important in many domains, for example. In ferms of a computational research field of machine learning, selection
of feature pattern has been studied such as Random Forest, K-Nearest and Support Vector Machine (SVM). One of most the
well-known machine learning algorithms is SVIM, which is classical as well as original. The one of a member of SVM-criterion is Support
Vector Machine-Recursive Featfure Elimination (SVM-RFE), which have been utilized in our research work. We propose a novel algorithm
of the SYM-RFE with @-learning in reinforcement leaming for better variable selection of feature pattern. By comparing our proposed
algorithm with the well-known SVM-RFE combining Welch’ T in published data, our result can show that the criterion from weight vector
of SVM-RFE enhanced by Q-earning has been improved by an off-policy by a more exploratory scheme of Q-leaming.

= keyword : Support-Vector Machine, RNA sequencing Big-Data, Support Vector Machine-Recursive Feature Elimination, @-learning,
Reinforcement Learning

1. Introduction

The primary source of information about a machine learning
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in these days is mostly RNA sequencing Big-data (RNA-seq).
In terms of one of numerical systems in computational
research area, like a Support Vector Machines-Recursive
Feature Elimination (SVM-RFE), based on Support Vector
Machine (SVM) criterion , data are usually represented as
vectors such as featured patterns, especially in RNA-seq. They
may correspond to measurements, being performed on the
information gathered from the observation of a phenomenon.
Usually all featured pattern genes in RNA-seq are not equally
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informative: some of them may be noisy, meaningless,
correlated or irrelevant. Therefore, they are lack of identifying
deferentially expressed genes [1]. A variable selection of
feature pattern aims at selecting a subset of the featured genes
which is distinguishable relevant for specially problems [1].
It is an important open issue: the hugh amount of data to gather
or process should be reduced. That means if training itself
might be easier, then the better estimates will be obtained when
using relevant featured genes of RNA-seq. Therefore, more
sophisticated processing algorithms should be used on smaller
dimensional spaces than on the original measure space.
Moreover, computational performances might get increasing
when non-relevant informations do not interfere the processes
[2, 3, 4, 5]. A variable selection of feature pattern has been
the subject of intensive researches in the application of
identifying differential-expressed genes for the maximum gene
relevancy and minimum gene redundancy. It has recently began
to be investigated in the machine learning algorithms such as
random forest, K-nearest, and SVM. Because of the curse of
dimensionality, whatever the domain is, a variable feature
selection remains an open issue and non-monotonous.
Moreover, the size of expressed genes are extremely larger
than those of Big-data samples. That means the distinguishable
subset of p variables for the discrimination does not always
contain the best discriminate subset of q variables (q < p)
[6, 7]. Most algorithms for variable selection rely on human
heuristics in the machine learning which perform a limited
exploration on the whole set of variable combinations [8, 9,
10]. In the field of machine learning, feature selection has been
studied. One of the most well-known machine learning
algorithms is SVM, which is classical as well as original. And
the one of a member of SVM-criterion is Support Vector
Machine-Recursive Feature Elimination (SVM-RFE), which
have been utilized in our research work.

We propose a novel algorithm of exploiting the efficiency
of criteria derived from Support Vector Machines-Recursive
Feature Elimination (SVM-RFE) [1] combining off-policy Q
reinforcement learning for a variable feature selection in
application to differential-expressed genes in RNA-seq. We
especially employ an off-policy Q-learning in reinforcement
learning to be trained for controling the optimization of the
criterion for better weight vectors in the SVM-RFE. Due to
the reinforcement learning [2-5], the self-teaching algorithms

are designed in the area of Big-Data on open issues. By
accompanying algorithm in the area of RNA-seq Big-data, the
variable feature selection on the huge amount of data might
be helpful for reducing loads on Big-Data issues. Moreover,
the variable feature selection might be appropriate for resource
demands in other different researches. We think that our
proposed algorithm based on reinforcement learning is beyond
the feature selection in the area of Big-data because reinforced
selection algorithm makes the refined meaningful features. An
off-policy Q-learning is regarded as superior to a discount
method and a randomness of off-policy Q-learning might cut
on the relevance of data because exploration are compromised
in a policy of Q-learning.

By comparing our proposed algorithm with the well-known
SVM-RFE combing Welch’ T, our result can show that the
criterion from weight vector of SVM-RFE enhanced by
Q-learning has been improved by a greediness of off-policy
following a more exploratory of Q-learning.

2. METHODS

2.1 MOTIVATION

Our first purpose of the proposed algorithm is that
enhancing the weight vectors of SVM by exploration and
exploitation. There is a big difference between on-policy and
off-policy. SARSA or TD-learning is one of on-policies and
a Q-learning is one of off-policies. Before we are regarding
of the two policies, let us give a simple example. There is
one decision that a robot moves either to a nearby door or
to a distant gate. In terms of Q-learning with low y by reducing
a value, it moves to the nearby door (a goal). An off-policy
Q-learning might have more advantage in terms of discounted
methods and get captured in limit cycles. Therefore, trying to
do random, as known as exploration is extremely important
for a long-term goal success. We call it that “Exploration-
Exploitation Dilemma” [2-5]

When the determined policy has been given as follows:

Deterministic: function that maps states to actions.

m:S—>Aa=T1().
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Examples: off-policy in Q-learning:
a = T (s) = argmax,Q(s,a).

Stochastic: Probability of an action given a state s.
T SXA— [0,1] with 2.eas T (s,2) = 1 for all s
P (als) = 1 (as)

The on-policy (TD-learning, SARSA) starts with a simple
soft rather than off-policy Q-learning collects information from
sometimes random moves evaluates states as if a €-greedy
random-policy was employed and reduce randomness very
slowly. Therefore, in terms of on-policy, it is rare to use
randomness. Because of that when it comes to the
high-dimension and low-sample-size data, it is difficult to
make advantage of exploration. We can compare the both
TD-learning and Q-learning equations as follows: [2, 3, 4, 5]

Q-learning (off-policy): a; = argmax,Q(s,) (plus exploration)
Qui(sha) = (1—MQs, a) + Nt + ymaxaQi(Si1,a)

TD-learning or SARSA  (on-policy): Qui(swa) = (1—N)Q
(sva) + N + YQuSe1,ai41))

Q-learning follows the rule: V(si+1)=max,Q(s+1,2), however,
ai+1 can be anything. That is exploration. SARSA follows the
rule: a; ~ TU(S,) and updates the rule it leamns by the precise
value for T(s,a). That means that it does not make an advantage
of exploration [2-5]

Initialize Q (s,a) arbitrarily
Repeat (for each episode):
Initialize §
Repeat (for each step of episode):
Choose a from s using policy derived from Q
Take action a, observe r, s’
Update
Q(s,a) « O(s,a)+alr+ ymax Q(s'a")y - 0(s,a)]
55
Until s is terminal

(2l 1) off-policy Q-learning ¥12I&
(Figure 1) off-policy Q learning (2, 3, 4, b)
2.2 SVM-RFE algorithm

Guyon et al. proposes a feature pattern selection, SVM-RFE
[7]. The purpose is to find a distinguishable subset among

variables of feature pattern, which maximizes the performance
of the prediction method. It is based on a backward sequential
selection. One starts with all the features and removes one
feature per one loop. In some research works, because of the
large amount of feature genes, some chunks of features will
be removed until the distinguishable features are left. When
facing highly dimensional and the low size of samples,
classification or prediction problem suffers from over-fitting
and high-variance gradients [8]. However, some machine
learning algorithms likewise SVM-RFE can make good results
on the low size of samples with low-variance gradients.
SVM-RFE removes irrelevant the gene that is the smallest
ranking criteria from the gene set [7]. The criteria of SVM
for the score of gene ranking is used as the measurement of
the determinant of featured genes. The weight vector w of the
SVM defines the gene ranking score,
where w is calculated as.

w= Z ;Y M

i=1

where x; is the gene expression array of a sample ¢ in
the training set, y; is the class label of 7, y, €[-1, 1] and
a,; is the “Lagrangian Multiplier”. With a non-zero weight

of vectors, a; are support vectors [7].

Algorithm:SVM-RFE
Input: gene set, G={1,2,...n},
Output: gene list for classification based on the ranking criterion, R
1. Initialization Set G={}
2. Do while if G is not empty
Train SVM in G
Compute the weight vector by eq(1)
Compute the ranking criterion, CR=w2
Rank, R the features by sorting based on CR
Update feature ranked list, FRList based on R
Eliminate the feature based on R
3. Return the feature ranked list, FRList

(23 2) SVM-RFE ¢112|& R-21of 7&
(Figure 2) The implementation of SYM-RFE Algorithm
in R

The removed variable of SVM-REFE is significantly important.
In the method, the removal minimizes the variation of ||W||2.
Hence, the ranking criterion R, for a given variable i is:

Re = | Wl - W= S
112 [Ziayyia) () - Ziaa ey 05”) @)

el

1= OlEfH] R3] (20243)
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where xi are training examples and yi are class labels. The
algorithm consists in first mapping x into a high dimensional
space via a function F [11]. By maximizing the distance
between the set of points F(xy) and the hyper-plane
parameterized from (w;b), where w is weight vector and b
is bias, while being consistent on the training set. The solution
is determined by the Lagrangian theory where, ay is the solution
of the following quadratic optimization problem and
<F(xi);F(x))> is the “Gram matrix” of the training examples
[11].

2.3 Off-policy Q learning

Off-policy Q-learning collects information from sometimes
random moves evaluates states as if a €-greedy random-policy
was employed and reduce randomness very slowly. Q-learning
is off-policy TD Control. That means Q-learning is trained how
to exploit action-value function, Q, and directly approximates
the optimal action-value function, while being independent of
the policy being followed [2-5].

Qlspa) < (Spa) 0t rymax, Qse1,2") - Qua)) — (3)

Off-policy Q-learning evaluates one policy while obeying
another, for example, to evaluate the greedy policy, as kown
as &-greedy. That means it makes advantage of more
exploratory scheme. The off-policy is utilized for behavior
should be soft and may be slower, but remains more flexible
if alternative ways appear [2-5].

3. THE PROPOSED ALGORITHM

In the proposed algorithm Fig 3, we SVM-RFE with
off-policy Q-learning in reinforcement learning for variable
selection of feature pattern in some applications. There are
some recent research works of variable selection of feature
pattern based on SVM. For the criterion of Rakotomamonjy
et al. [11], they utilize a gradient descent by the derivatives
of |lw|® with regard to a scaling array-vector associated to
variables. And in [12], the SVM-RFE and gradient of [[w]]
are fundamentally identified as they have the same ranking
criteria. However in our proposed algorithm based on the €
-greedy, the ranking criterion has been slightly effected in an

iterative way.

Algorithm: SVM-RFE with off-policy Q-learning
Input: GeneSet, G = {1, 2, a n},
Output: Ordered List based on the criterion, FRList

1. Initialize GeneSetNormal and GeneSetCancer
2. Initialize Q(g, a), Vg € G, a € A(g), hyper-parameters
in A(s) and Q(terminal-state)
3. Do while if NewGene, g' is not empty
Choose a from g using policy derived from Q
) \\ for random, (e-greedy)
Take action a, observe g™
Qga) = Qg,a) + ) o
alr” + ymaxQ(g", @) Qg )]
G=G’ ,
Train SVM in g
Compute the Ranking Criterion with one of A,
CR= | Wl - W |
Sort CR ; Update FRList ; Eliminate genes on CR
4. Return the feature ranked list, FRList

(22! 3) Mieksk= Q-learning2 2 SkAkEl SVM-RFE &1
2lE
(Figure 3) The proposed algorithm combining SVM-RFE
(1) with off-policy Q learning (2-5)

In our proposed SVM-RFE with Q-learning, SVM has been
trained in each iteration, depending on different sets of genes,
G, because of randomness of €-policy. In that G, the action
policy has been improving for selecting more differential-
expressed genes. Moreover, the action policy can be improved
by back propagation of the gradient descent. There has been
many state-of-the-art techniques in which hyper-parameters
such as Lagrangian multiplier or a learning rate has been
selected by the system designers. However, in our proposed
algorithm, we try to eliminate that flaws of the state-of-the-art
technique and give a good change to over-fitting problem by
only leaming the action policy of off-policy Q-learning in
reinforcement learning.

Normally, in terms of “High-Dimension and Low-Samples”
[13] like gene expressions array data, the on-policy
(TD-learning or SARSA) are regarded to more better solutions
which can evaluate or improve the policy used to make
decisions often using soft action choice, i.e. T (s,2) > 0 Va
, commit to always exploring and try to find the best policy
that still explores. However, it could become trapped in local
minima [2-5]. Because of those being trapped issues, we
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choose the off-policy Q-learning for evaluating one policy
while following another, for example, trying to evaluate the
greedy policy as known as €-greedy while following a more
exploratory scheme. The rules for behaviour like that
randomness should be soft policies and not be sufficient and
be slower [2-5]. However, the rule remains more adaptable
if alternative ways appear, then it might lead to a better result
following the greediness [2-5]. Therefore, we decide the use
of off-policy Q-learning for more enhancement of the weight
vectors of SVM-RFE.

4. Performance Evaluation

In recent studies, they claim that “for feature selection on
the gene expression”, it is extremely important to select as
less as significant distinguishable subsets for better
understanding and validation [7-10]. The smaller selected, the
better claimed. However, the smaller features of pattern might
not justify the high correlated variable feature target solutions
remarkable compared to other methods because of “Curse of
Dimension”[6]. Moreover, smaller variable features of pattern
might not be discriminated within a significant computational
performance. Therefore, we try to discriminate the
distinguishable variable selection of feature pattern that
describe the complicated gene expressions with regard to the
computational strengthen in published gene data, such as colon
cancer in Alon et al[14].

Fig. 4 shows the original result of Alon et al. on the
ribosomal protein cluster. Fig. 5 shows that comparition
of the proposed algorithm, SVM-RFE with enhanced weight
vectors by Q-leaming and the previous SVM-RFE with
enhanced with weight vectors by Welch’ T. The results
comparing are based on the original result by Alon et al [14].
We describe how many distinguishable variable selection of
feature pattern are ranked in the output-list. The all-features
of pattern selected from Alon et al[14] might not be in our
result and also the previous’ result. However, our result of
SVM-RFE with Q-learning is a little bit of better than those
of the previous SVM-RFE combining Welch’ T. We get the
“gene U14971” (Human Robosomal Protein S9m RNA), “gene
X57691” (40S Robosomal Protein S6) and “gene T58861”
(60S Robosomal Protein L30E). However, only two “gene
R20593” (60S acidic Robosomal Protein P1) and “gene

Gene
number Sequence Name
T63591 3" UTR 608 acidic ribosomal protein PO (human)
R50158 3" UTR Mus musculus 1.36 ribosomal protein®
T52642 3" UTR Guanylate e homolog (vaccinia virus)
R85464 3" UTR ATP synth pid-binding protein P2 precursor (human)
X55715 Gene Human H mRNA for 40S ribosomal protein s3
T52185 3" UTR P17074 408 ribosomal protein
T56934 3" UTR Homo sapiens alpha NAC mRNA (transcriptional coactivator)
T47144 3" UTR JIN0549 ribosomal protein YL30
172879 3" UTR 60S ribosomal protein L7A (human)
T57633 3" UTR 408 ribosomal protein $8 (human)
T58861 3" UTR 608 ribosomal protein L30E (Kluyveromyces lactis)
T52015 3 UTR Elongation factor 1-gamma (human)
T57619 3" UTR 408 ribosomal protein 86 (Nicotiana tabacum)
172938 3" UTR Ribosomal protein L10*
R02593 3" UTR 608 acidic ribosomal protein P1 (Polyorchis penicillatus)
T48804 3' UTR 408 ribosomal protein $24 (human)
RO1182 3" UTR 60S ribosomal protein L38 (human)
T61609 3" UTR H. sapiens gene for ribosomal protein Sa, partial cds®
H77302 3" UTR 60S ribosomal protein (human)
U14971 Gene Human ribosomal protein 89 mRNA, complete cds
H54676 3" UTR 60S ribosomal protein L18A (human)
R86975 3" UTR 408 ribosomal protein $28 (human)
T51560 3" UTR 408 ribosomal protein 16 (human)
H09263 3 UTR Elongation factor 1-alpha 1 (H. sapiens)
T49423 3" UTR ic conserved protein 1 (human)
163484 3" UTR ornithine decarboxylase antizyme (Oaz) mRNA, complete cds
R02593 3" UTR dic ribosomal protein P1 (P. penicillatus)
R22197 3" UTR 608 ribosomal protein L32 (human)
T51496 3" UTR 608 ribosomal protein L37A (human)

(22! 4) Cell Biology: Alon et al(14)2| Zn}
(Figure 4) The result of Cell Biology: Alon et al(14)

SVM-RFE with off-

Sz R Q-learning

POlicY| oy M-RFE with Welch's T| Alon et al. [14]

1 M26383 163591
2 T47377 R50518
3 R62549 152642
4 u37012 R85464
5 152185 X55715
6 162972 152185
7 R44884 156934
8 J00231 T47144
158861 T72879

R36977 157633

X63629 158861

M59807 152015

D14812 157619

M20543 T72938
M22382 R02503
H08393 148804
T84051 RO1182
151539 T61609
M81651 H77302
RA2127 U14971
21 106132 H54676
22 X75208 RB6975
23 R02593 151560
24 T98555 H09263
25 D00860 T49423
26 X17025 T63484
27 HB5355 R02503
28 X01060 R22107
20 104102 T51496

T57468

2

30

The number of g
enes in the rank

(a2l 5) MtshE Q-learninng 22 Z3lEl Weight
Vectore| SVM-RFEZ} Welth' T (7)2] Weight
Vectoroll 2Jgt SVM-RFE2| Zz} H|w
(Figure 5) Comparition of the proposed algorithm,
SVM-RFE with Q-learning and the
previous SVM-RFE with Welth' T (7]

el

b= QIE{Hl HE S| (20243)
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T58861” (60S Robosomal Protein L30E) are in the result of
the previous SVM-RFE combining Welch’ T.

Moreover, we found out that the “SVM-RFE” itself is
well-known for the most acceptable methods in many research
areas, because the gene “gene T58861” (60S Robosomal
Protein L30E) are in the both result, ours and the previous
one. Therefore, we can assure that there are some issues that
should be improved for better results in terms of using
SVM-REE itself.

Our recent research, C. Kim[15] is regard to the SVM-RFE
enhanced with minimum-redundance maximum-relevance
(MRMR). The results of the research [11] are regard to “how
many distinguishable features in the same places in the rank
list”. The research [15] makes advantages of only machine
learning without enhancing weigh vectors by the reinforcement
learning. Therefore, we can find out that the proposed
algorithm can improve the computational performance by
enhancing the previous SVM-RFE with MRMR([7] using
enhanced weight vector by Q-learning for a better qualified
learning algorithms. Morever, based on the recent works of
reinforcement learning [16, 17], we will improve our results
on ribosomal protein cluster [14].

5. Conclusion

We have suggested a novel algorithm of exploiting the
efficiency of criteria derived from Support Vector Machines-
Recursive Feature Elimination (SVM-RFE) [1] with off-policy
Q-learning in reinforcement learning [2-5] for variable feature
selection in application to differential-expressed genes of
RNA-seq Big-data. We employ an off-policy Q-learning in
reinforcement learmning to learn how to control the optimization
of the criteria based on the weight vectors of the SVM-RFE.
We exploit a gradient descent by the derivatives of | W] -
||w(i)||2| and max,Q(s,a)* exploration scheme. The ranking
criterion based on the €-greedy has been slightly effected in
an iterative way of off-policy Q-learning. The SVM of our
proposed algorithm has been trained according to different sets
of G because of randomness of &-greey. In that G, the action
policy has been improving for selecting more differential-
expressed genes by back propagation of gradient descent. Our
proposed algorithm try to eliminate the over-fitting problem
by learning the action policy of off-policy Q-learning in

reinforcement learning. By comparing our proposed algorithm
with the previous SVM-RFE combining Welch’ T [7], we can
show that the criterion based on weight vector of SVM-RFE
can be improved by the greedy policy following a more
exploratory scheme of off-policy Q-learning.
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