• Journal of Internet Computing and Services
    ISSN 2287 - 1136 (Online) / ISSN 1598 - 0170 (Print)
    https://jics.or.kr/

Pedestrian Classification using CNN's Deep Features and Transfer Learning


Soyoung Chung, Min Gyo Chung, Journal of Internet Computing and Services, Vol. 20, No. 4, pp. 91-102, Aug. 2019
10.7472/jksii.2019.20.4.91, Full Text:
Keywords: Pedestrian Classification, Transfer Learning, Deep Features, CNN, INRIA Person Data Set

Abstract

In autonomous driving systems, the ability to classify pedestrians in images captured by cameras is very important for pedestrian safety. In the past, after extracting features of pedestrians with HOG(Histogram of Oriented Gradients) or SIFT(Scale-Invariant Feature Transform), people classified them using SVM(Support Vector Machine). However, extracting pedestrian characteristics in such a handcrafted manner has many limitations. Therefore, this paper proposes a method to classify pedestrians reliably and effectively using CNN’s(Convolutional Neural Network) deep features and transfer learning. We have experimented with both the fixed feature extractor and the fine-tuning methods, which are two representative transfer learning techniques. Particularly, in the fine-tuning method, we have added a new scheme, called M-Fine(Modified Fine-tuning), which divideslayers into transferred parts and non-transferred parts in three different sizes, and adjusts weights only for layers belonging to non-transferred parts. Experiments on INRIA Person data set with five CNN models(VGGNet, DenseNet, Inception V3, Xception, and MobileNet) showed that CNN's deep features perform better than handcrafted features such as HOG and SIFT, and that the accuracy of Xception (threshold = 0.5) isthe highest at 99.61%. MobileNet, which achieved similar performance to Xception and learned 80% fewer parameters, was the best in terms of efficiency. Among the three transfer learning schemes tested above, the performance of the fine-tuning method was the best. The performance of the M-Fine method was comparable to or slightly lower than that of the fine-tuningmethod, but higher than that of the fixed feature extractor method.


Statistics
Show / Hide Statistics

Statistics (Cumulative Counts from November 1st, 2017)
Multiple requests among the same browser session are counted as one view.
If you mouse over a chart, the values of data points will be shown.


Cite this article
[APA Style]
Chung, S. & Chung, M. (2019). Pedestrian Classification using CNN's Deep Features and Transfer Learning. Journal of Internet Computing and Services, 20(4), 91-102. DOI: 10.7472/jksii.2019.20.4.91.

[IEEE Style]
S. Chung and M. G. Chung, "Pedestrian Classification using CNN's Deep Features and Transfer Learning," Journal of Internet Computing and Services, vol. 20, no. 4, pp. 91-102, 2019. DOI: 10.7472/jksii.2019.20.4.91.

[ACM Style]
Soyoung Chung and Min Gyo Chung. 2019. Pedestrian Classification using CNN's Deep Features and Transfer Learning. Journal of Internet Computing and Services, 20, 4, (2019), 91-102. DOI: 10.7472/jksii.2019.20.4.91.