
Journal of Internet Computing and Services(JICS) 2024. Jun.: 25(3): 1-8 1

A Study on Vulnerability Analysis and Memory
Forensics of ESP32

☆

Jiyeon Baek1 Jiwon Jang1
Seongmin Kim2**

ABSTRACT

As the Internet of Things (IoT) has gained significant prominence in our daily lives, most IoT devices rely on over-the-air technology

to automatically update firmware or software remotely via the network connection to relieve the burden of manual updates by users.

And preserving security for OTA interface is one of the main requirements to defend against potential threats. This paper presents a

simulation of an attack scenario on the commoditized System-on-a-chip, ESP32 chip, utilized for drones during their OTA update process.

We demonstrate three types of attacks, WiFi cracking, ARP spoofing, and TCP SYN flooding techniques and postpone the OTA update

procedure on an ESP32 Drone. As in this scenario, unpatched IoT devices can be vulnerable to a variety of potential threats.

Additionally, we review the chip to obtain traces of attacks from a forensics perspective and acquire memory forensic artifacts to

indicate the SYN flooding attack.

☞ keyword : Memory forensics, Over-The-Air (OTA), ESP32, Attack scenario

1. Introduction

Despite the widespread adoption of IoT technology,

preserving security guarantees for IoT devices has been less

of a priority than functionality and performance due to the

limited hardware resources and compact size, making

developers focus on delivering concise features. This

tendency, in turn, makes designing and implementing robust

security in IoT devices challenging and leads to various

security incidents. For example, Mozi botnet specifically

targeted IoT devices for use in Distributed Denial of Service

(DDoS) attacks. It successfully infected 12,000 IoT devices

1 Dept. of Future Convergence Technology Engineering, Sungshin
Women’s University, Seoul, 02844, Korea

2 Dept. of Convergence Security Engineering, Sungshin Women’s
University, Seoul, 02844, Korea

* Corresponding author (sm.kim@sungshin.ac.kr)
[Received 27 January 2024, Reviewed 20 February 2024(R2 09
April 2024), Accepted 17 April 2024]
☆ This work is supported by the Ministry of Trade, Industry and

Energy (MOTIE) under Training Industrial Security Specialist for
High-Tech Industry (RS-2024-00415520) supervised by the Korea
Institute for Advancement of Technology (KIAT), and the
Ministry of Science and ICT (MSIT) under the ICAN (ICT
Challenge and Advanced Network of HRD) program (No.
IITP-2022-RS-2022-00156310) supervised by the Institute of
Information & Communication Technology Planning &
Evaluation (IITP).

☆ A preliminary version of this paper was presented at APIC-IST
2023.

across 72 countries [1]. Additionally, wall-pad IoT devices

were hacked in South Korea, resulting in privacy leakage for

over 400,000 households through the device’s built-in camera

in 2021 [2].

Meanwhile, most IoT devices rely on over-the-air (OTA)

technology to automatically update firmware or software

remotely via the network connection to relieve users of the

burden of manual updates. By utilizing OTA interfaces,

devices can seamlessly receive and install updates over a

network connection, ensuring that they stay up to date with

the latest features, bug fixes, and security patches. This

technology is best known for updating smart cars, but due to

its convenience, OTA interfaces are also widely used in

smartphones and smart home devices. Moreover, with the

increasing adoption of modern system-on-a-chip (SoC)

designs in embedded systems and IoT devices, wireless

connectivity features such as WiFi and Bluetooth Low

Energy (BLE) are becoming commonplace. Many of these

SoCs are equipped with OTA update capabilities, further

increasing the convenience and prevalence of OTA.

However, despite of the ubiquity of OTA technology,

potential security vulnerabilities still exist when utilizing

OTA. Attacker can interpose the OTA channel by sniffing

the update packets, taking unauthorized device control, and

installing malware [3]. Once the OTA connection is

compromised, an attacker gains the ability to update the

http://dx.doi.org/10.7472/jksii.2024.25.3.1

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2024 KSII

A Study on Vulnerability Analysis and Memory Forensics of ESP32

2 2024. 6

firmware and take full control of the target device.

In this study, the security analysis on OTA updates is

demonstrated using a commodity SoC called ESP32,

developed by Espressif [4]. The ESP32 is a typical low-cost

SoC that offers low-power consumption and rich integrations

with the OTA feature [5]. It is widely used across various

domains, from Arduino drones to commercial low-end

wearable devices and smart home IoT. Specifically, this

research focuses on an IoT drone (referred to as ESP32

drone), which is based on the ESP32 DOIT DEVKIT board,

to identify potential attack scenarios during OTA updates.

The contributions of this paper are outlined as follows:

(1) Implementation of attack scenarios on the OTA

process for security evaluation of ESP32 drones, ultimately

disrupting the firmware updates of the drones. This highlights

potential vulnerabilities in unpatched firmware.

(2) Conducting a forensic analysis of the chip after the

attacks to obtain traces of the attacks, demonstrating the

potential for extracting hacking evidence during the OTA

process.

Section 2 of the paper presents several studies related to

attack scenarios and forensics in IoT. Section 3 introduces

and implements attack scenarios on OTA, and Section 4

conducts forensic analysis on the ESP32 memory after the

attacks. Section 5 concludes the paper.

2. Related Work

This section encompasses research studies focused on

hacking pertaining to networks or OTA methods targeting

IoT devices, as well as investigations conducted in the field

of digital forensics concerning such devices.

Jeon and Lee [3] analyzed OTA update vulnerabilities in

IoT healthcare devices constructed of Arduino MKR1000

WiFi board. They implemented reverse engineering of the

sniffed OTA packet data and performed a mock attack on the

OTA process to install a dummy program on the device.

Barybin et al. [6] employed various network hacking tools

to simulate a hack on a digital temperature sensor built with

the ESP DevKit V2. They disconnected the device’s WiFi

connection from the server and transmitted fake temperature

data, pretending to be a victim. The study identified the UDP

protocol as the most vulnerable point in this experiment and

recommended using the TCP protocol for better security.

Li et al. [7] conducted practical memory forensic

experiments on the ESP series to retrieve forensic evidence.

They found that retrieving memory data through the USB

port could be dangerous as the device automatically runs

when connected, allowing potential tampering if a malicious

program is installed. Instead, they classified the ESP series

into three types by pins and suggested a forensic method

using a combination of 3D printing, PoGo pins, and cold

soldering.

This study stands out by presenting an attack scenario

specifically focused on disrupting the OTA process of the

ESP32 device. In contrast, reference [3] did not specifically

target the ESP32 device, and [6] exploits the WiFi

connection instead of OTA. Furthermore, this paper conducts

an analysis of memory forensic artifacts resulting from the

attacks through UART. It is important to note that the

simulated attack scenario in this study does not involve the

installation of malware. As a result, it does not address the

issue of memory data extraction through USB, which was

discussed in [7].

3. OTA attack simulation scenario

This section demonstrates a simulation of an OTA attack

scenario, as shown in Figure 1. The scenario involves a

standard OTA update on an ESP32 drone initiated by a

victim, alongside a simulated network attack occurring

concurrently with the OTA update process. The simulation

includes several steps outlined below:

∙In order to gain access to a victim’s network, an

attacker attempts to crack the victim's WiFi network.

∙After access the victim’s network, the attacker identifies

the IP address of the ESP32 drone.

∙When the victim conducts an OTA update on an ESP32

drone, the attacker sniffs the OTA packets by

performing ARP spoofing.

∙The attacker draws the OTA protocol and executes a

TCP SYN flooding attack while a new OTA is being

conducted on the ESP32 drone to disrupt the update

process.

A Study on Vulnerability Analysis and Memory Forensics of ESP32

한국 인터넷 정보학회 (25권3호) 3

The implementation of this scenario involves using Kali

Linux on the attacker's PC and utilizing an IPTIME N604R

plus router as the victim's access point, to which the ESP32

drone is connected.

(Figure 1) The attack scenario on OTA process of

the ESP32 drone.

3.1 Cracking Wireless Access Point

In the initial stage of the attack scenario, several network

hacking tools such as aircrack-ng, airmon-ng, airodump-ng,

and aireplay-ng, known for their ability to crack WEP/WPA

networks, were utilized to gain access to the victim’s router

[8]. The first step involved switching the wireless interface

from managed mode to monitor mode using airmon-ng. This

enabled the scanning of all WiFi connections, including the

victim’s network, using airodump-ng.

(Figure 2) Using airplay-ng to infiltrate WiFi network.

After scanning the victim’s WiFi connection, aireplay-ng

is employed to send de-authentication packets to the network,

as depicted in Figure 2, in order to capture the WPA

handshake of the victim's WiFi. Once the WPA handshake

information is obtained, aircrack-ng is utilized in conjunction

with the password dictionary rockyou.txt [9] to crack the

password of the victim’s WiFi, as shown in Figure 3.

Subsequently, upon gaining access to the victim’s WiFi

connection, the IP address of the ESP32 drone is identified,

which was utilized for ARP spoofing during the OTA update.

(Figure 3) Crack the victim’s WiFi password with

aircrack-ng and rockyou.txt

3.2 ARP Spoofing attack during OTA update

The simulation of OTA packet sniffing is conducted using

Ettercap and Wireshark on the Kali Linux. Ettercap [10], an

open-source tool, is utilized to facilitate man-in-the-middle

(MITM) attacks on the local area network (LAN), while

Wireshark [11], another open-source tool, is employed for

comprehensive network packet and protocol analysis. In

particular, the ARP poisoning technique, which is one of the

MITM attack techniques supported by Ettercap, is employed

to intercept and manipulate network traffic, allowing for the

capture of OTA packets. Concurrently, Wireshark is utilized

to capture and analyze the intercepted OTA packet.

Before initiating the ARP spoofing, we identified the IP

addresses of both the ESP32 drone and the attacker by

sniffing the packets (Figure 4).

(Figure 4) Deriving IP and MAC addresses

During the ARP spoofing process, it was verified that the

ESP32 drone, which had previously established a connection

to the network using the UDP protocol, initiated an OTA

update and established a TCP connection for the transmission

of the update data. Moreover, Figure 5 illustrates additional

details obtained during this process, including information

such as the board type of ESP32 and user-designated strings.

A Study on Vulnerability Analysis and Memory Forensics of ESP32

4 2024. 6

(Figure 5) Discovered TCP 3-way handshake connection

and ESP32 drone information during OTA

update

3.3 TCP SYN Flooding attack during OTA

update

Upon discovering that the OTA update utilizes TCP

protocol, a TCP SYN flooding attack is executed to disrupt

the OTA process on the drone. TCP SYN flooding is a form

of Denial-of-Service(DoS) attack that exploits the TCP 3-way

handshake of a target. To carry out this attack, the hping3

tool [12] is employed to repeatedly transmit SYN packets to

the ESP32 drone. As a result, the update server ceases its

attempts to establish a connection with the drone and

generates an error message. Figure 6 illustrates the command

used for the attack and the error message displayed from the

server.

(Figure 6) The OTA update process fails when a TCP

SYN packet is sent to the ESP32 drone.

In summary, the attack scenario involved three attacks on

the ESP32 drone during its OTA update process. Initially, the

attacker gained unauthorized access to the access point to

which the ESP32 drone was connected, by exploiting WiFi

cracking techniques. Subsequently, an ARP spoofing attack

was executed, revealing that the ESP32 OTA process utilized

the TCP protocol as the default. Finally, TCP SYN flooding

attack was launched to disrupt the update process, resulting

in a delay in patching the ESP32 drone with the latest

firmware.

Maintaining the most up-to-date version of software and

promptly patching vulnerabilities through software updates is

crucial for ensuring device security. This OTA attack scenario

highlighted that if an attacker continues to hinder OTA

updates with malicious intent, the vulnerable software version

may persist, leaving the possibility of future hacking.

4. ESP32 Memory Analysis

To excavate the forensic evidence of TCP SYN flooding

attack aimed at delaying OTA updates, an analysis of the

ESP32-WROOM-32 is conducted, which is the fundamental

component of the ESP32 DOIT DEVKIT board. This

particular module comprises 520KB of internal SRAM,

448KB of internal ROM, and 4MB of external SPI (Serial

Peripheral Interface) flash storage which is non-volatile and

stores user data [13]. The connection is established using the

Universal Asynchronous Receiver /Transmitter (UART)

interface, while the memory dump is performed using the

esptool.py program, an open-source tool provided by the

Espressif IoT Development Framework (ESP-IDF) [14].

4.1 ESP32 Memory Structure

The flash storage of the ESP32 is responsible for storing

multiple applications through various partition configurations.

Specifically, Espressif provides two built-in partition tables:

(i) 'Single factory app, no OTA' that can only store factory

apps, and (ii) 'Factory app, two OTA definitions', designed

to support OTA updates [15]. The specific ESP32 being

examined was configured with the latter partition table,

enabling OTA functionality. The sturcture of this partition

table is illustrated in Figure 7.

Following the execution of an OTA update, the updated

data is written to one of the app partitions that is currently

A Study on Vulnerability Analysis and Memory Forensics of ESP32

한국 인터넷 정보학회 (25권3호) 5

inactive. The partition ID associated with the updated data　is

stored in the otadata area. Upon successful completion of the

update process, the ESP32 is undergoes an automatic reboot.

During this reboot, the bootloader refers to the ID stored in

the otadata to execute the corresponding partition [16]. In the

event that the OTA data area is empty, the bootloader

executes the factory partition, which contains the default

application data.

(Figure 7) Partition table of ESP32

4.2 Memory Dump Analysis

In order to extract the contents of dump the flash storage,

a connection is established between the ESP32 chip and a PC

using UART communication. The ESP32 is equipped with a

UART port which enables serial communication for tasks

such as firmware uploading or monitoring output [17]. To

perform the flash dump, the esptool.py is utilized. This tool

allows for the extraction of the flash storage as a binary file.

To identify traces of the attack, a total of three memory

dumps were performed. Two dumps were executed during

normal update attempts, each of which was given the name

“esp32_dump.bin” and “esp32_dump2.bin” respectively.

Additionally, a memory dump was taken after the SYN

flooding attack and labeled as “synflooding.bin”.

4.2.1 Analyzing esp32_dump.bin

As part of the analysis to identify the memory relevant to

the OTA update, the otadata partition within the

esp32_dump.bin file was examined. It was discovered that

this area contains a historical record of WiFi connections,

which includes a collection of SSIDs (Service Set Identifiers)

and their corresponding passwords. This information is

depicted in Figure 8.

(Figure 8) WiFi data is stored in otadata partition

(offset 0xD000)

Furthermore, it was revealed that the updated firmware

content was written starting from the offset 0x150000 instead

of the initial offset of app_0, which is 0x110000. To

investigate this further, the updated firmware content

compared with the packets sniffed from the perspective of an

attacker above. Consequently, it was observed that the same

values as the sniffed packet data were stored in the memory

locations ranging from 0x150010 to 0x243D89, as shown in

Figure 9.

This analysis implies that memory forensics enables the

retrieval of a complete history of WiFi connections from the

ESP32 drone. Not only does this apply to the attack case

discussed in this paper, but this information can also serve as

a valuable trace for identifying an attacker in various attack

A Study on Vulnerability Analysis and Memory Forensics of ESP32

6 2024. 6

scenarios. Additionally, this information can provide crucial

clues for detecting potential artifacts associated with the

transmission of fake firmware.

(Figure 9) Comparing the esp32_dump.bin file (left)

with the sniffed packet data (right)

4.2.2 Detecting evidence of TCP SYN Flooding

 In order to identify memory artifacts of the SYN

flooding attack, a comparison was made between the three

dump files using WinMerge [18], a open-source file

comparison tool. Figure 10 illustrates the comparision of the

content within the files: esp32_dump.bin, esp32_dump1.bin,

and synflooding.bin.

(Figure 10) The comparison was conducted between

the following files: esp32_dump.bin,

esp32_dump1.bin, and synflooding.bin (in the

given order).

The analysis showed that the otadata partition recorded

data block size of 0x40 during a regular OTA update. On the

other hand, in the case of a TCP SYN flooding attack

executed on the device, the memory registered five times the

amount of data compared to a normal OTA update. This

result suggests that an abnormally high number of the data

blocks written in this partition can be considered an artifact

of a SYN flooding attack.

Moreover, within the recorded data block, the field labeled

“WIFI_STA” indicates the operational mode of the ESP32

device, functioning as a station and establishing an

connection with an access point [19]. Considering that the

block includes the device’s access information to an access

point (WIFI_STA_DEF), it becomes plausible to regard this

as a potential indication of other types of Denial-of-Service

(DoS) attacks that can disrupt network connectivity.

5. Summary

IoT is playing an integral role in the hyper-connected era,

and at the same time, various attack vectors such as malware

threats and network vulnerabilities are on the rise. This study

focuses on the ESP32 SoC, widely utilized in various IoT

devices, and implements an attack scenario that disrupts the

latest firmware updates through a DoS attack on OTA.

Additionally, the forensic analysis of the ESP32 drones was

conducted from a memory forensics perspective after the

attacks, revealing traces of the DoS attack and demonstrating

potential forensic evidence.

According to [20], unpatched vulnerabilities represent the

primary attack vector and more than 50% of the 233 older

vulnerabilites before 2021 have been exploited by

ransomware groups. The simulated OTA attack on the IoT

drone highlights the criticality of OTA availability by

revealing the potential consequences of leaving vulnerabilities

unpatched. This scenario exposes the drone to a range of

potential threats, emphasizing the significance of maintaining

a secure and up-to-date OTA system to safeguard against

future risks.

A Study on Vulnerability Analysis and Memory Forensics of ESP32

한국 인터넷 정보학회 (25권3호) 7

References

[1] The Korea Herald, “IoT devices hacking statistics”,

http://news.koreaherald.com/view.php?ud=20220119000736

[2] Yonhap News, “Home cameras hacking statistics”,

https://en.yna.co.kr/view/AEN20221220009100315

[3] H. Jeon, and S. Lee, "Analysis of Remote Update

Vulnerabilities of IoT Healthcare Devices," Journal of

KIIT, Vol. 19, No. 1, pp. 87-97, 2021.

http://dx.doi.org/10.14801/jkiit.2021.19.1.87

[4] Espressif, https://www.espressif.com/

[5] Espressif, “ESP32-S2 Series Datasheet”,

https://www.espressif.com/en/products/devkits

[6] O. Barybin, E. Zaitseva, and V. Brazhnyi, "Testing the

Security ESP32 Internet of Things Devices", 2019 IEEE

International Scientific-Practical Conference Problems of

Infocommunications, Science and Technology (PIC

S&T), 2019.

http://dx.doi.org/10.1109/PICST47496.2019.9061269

[7] Z. Li, H. Ren, E. Chou, X. Liu, and C. D. McAllister,

"Retrieving Forensically Sound Evidence from the ESP

Series of IoT Devices", IEEE Internet of Things Journal,

Vol. 9, No.15, pp. 13144-13152, 2022.

http://dx.doi.org/10.1109/JIOT.2022.3144164

[8] Aircrack-Ng,https://www.kali.org/tools/aircrack-ng/

[9] Wordlists,https://www.kali.org/tools/wordlists/

[10] Ettercap Project, https://www.ettercap-project.org/

[11] Wireshark, https://www.wireshark.org

[12] Hping3, https://www.kali.org/tools/hping3/

[13] Espressif, “ESP32-WROOM-32 Datasheet”,

https://www.espressif.com/sites/default/files/documentatio

n/esp32-wroom-32_datasheet_en.pdf

[14] Espressif, “Esptool.py Documentation”,

https://docs.espressif.com/projects/esptool/en/latest/esp32/

[15] Espressif, “ESP-IDF API Guides”,

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

api-guides/partition-tables.html

[16] ESP32 Tutorials,

http://www.lucadentella.it/en/2016/12/22/esp32-4-flash-bo

otloader-e-freertos/

[17] B. Pearson, L. Luo, Y. Zhang, R. Dey, Z. Ling, M.

Bassiouni, and X. Fu, "On Misconception of Hardware

and Cost in IoT Security and Privacy", In ICC

2019-2019 IEEE International Conference on

Communications (ICC), 2019.

http://dx.doi.org/10.1109/ICC.2019.8761062

[18] Winmerge, https://winmerge.org/

[19] ESP32 Networking APIs. Espressif,

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

api-reference/network/esp_wifi.html

[20] Hackers are increasingly targeting Zero-Day Vulnerabilites.

Business Wire,

https://www.businesswire.com/news/home/202201260050

14/en/Ransomware-2021-Year-End-Report-Reveals-Hack

ers-are-Increasingly-Targeting-Zero-Day-Vulnerabilities-a

nd-Supply-Chain-Networks-for-Maximum-Impact

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
http://www.lucadentella.it/en/2016/12/22/esp32-4-flash-bootloader-e-freertos/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html
https://www.businesswire.com/news/home/20220126005014/en/Ransomware-2021-Year-End-Report-Reveals-Hackers-are-Increasingly-Targeting-Zero-Day-Vulnerabilities-and-Supply-Chain-Networks-for-Maximum-Impact

A Study on Vulnerability Analysis and Memory Forensics of ESP32

8 2024. 6

◐ 저 자 소 개 ◑

백 지 연(Ji-yeon Baek)

2020년 성신여자대학교 융합보안공학과(공학사)

2023년 성신여자대학교 대학원 미래융합기술공학과(공학석사)

관심분야 : Automotive security, IoT security, etc.

E-mail : hesedbaek98@gmail.com

장 지 원(Jiwon Jang)

2022년 성신여자대학교 융합보안공학과(공학사)

2022년 성신여자대학교 심리학과(문학사)

2024년 성신여자대학교 대학원 미래융합기술공학과(공학석사)

관심분야 : Information Security, Pentest, IoT Security, etc.

E-mail : nebulaboratory@gmail.com

김 성 민(Seongmin Kim)

2012년 한국과학기술원 전기 및 전자공학과 졸업
2014년 한국과학기술원 전기 및 전자공학과 석사
2019년 한국과학기술원 정보보호대학원 박사
2020년 9월~현재: 성신여자대학교 융합보안공학과 조교수
관심분야 : 신뢰 실행 환경, 클라우드 컴퓨팅, 시스템 보안
E-mail : sm.kim@sungshin.ac.kr

