Digital Library
Search: "[ keyword: LSTM ]" (9)
-
1. A Study on the Energy Usage Prediction and Energy Demand Shift Model to Increase Energy EfficiencyJaeHwan Kim, SeMo Yang, KangYoon Lee, Vol. 24, No. 2, pp. 57-66, Apr. 2023
10.7472/jksii.2023.24.2.57
Keywords: Energy, Energy usage fee, LSTM, clustering, Time Series K-means, shift of demand -
Hyun-Sam Shin, Jun-Ki Hong, Sung-Chan Hong, Vol. 24, No. 2, pp. 11-18, Apr. 2023
10.7472/jksii.2023.24.2.11
Keywords: -
Giyoung Hwang, Dongjun Jung, Yunyeong Goh, Jong-Moon Chung, Vol. 24, No. 1, pp. 39-47, Feb. 2023
10.7472/jksii.2023.24.1.39
Keywords: autonomous vehicles, ADAS, Machine Learning, SVM, LSTM, GRU, Public Driving Safety -
4. Bidirectional LSTM based light-weighted malware detection modelusing Windows PE format binary dataKwang-Yun PARK, Soo-Jin LEE, Vol. 23, No. 1, pp. 87-93, Feb. 2022
10.7472/jksii.2022.23.1.87
Keywords: Bidirectional LSTM, Windows PE malware, Detection, EMBER2018 -
Jun-Ki Hong, Yang-Kyoo Lee, Vol. 22, No. 3, pp. 67-73, Jun. 2021
10.7472/jksii.2021.22.3.67
Keywords: Deep Learning, RNN, LSTM, Drone, Motor, Vibration -
Yeongha Kim, Inhwan Kim, Beakcheol Jang, Vol. 21, No. 5, pp. 139-148, Oct. 2020
10.7472/jksii.2020.21.5.139
Keywords: Machine Learning, Predict infectious diseases, Web data, LSTM -
Haesung Lee, Byungsung Lee, Hyun Ahn, Vol. 21, No. 5, pp. 119-127, Oct. 2020
10.7472/jksii.2020.21.5.119
Keywords: EV, Peak electric load, Load forecasting, Deep Learning, LSTM -
Seong-Hun Ham, Hyun Ahn, Kwanghoon Pio Kim, Vol. 21, No. 3, pp. 83-92, Jun. 2020
10.7472/jksii.2020.21.3.83
Keywords: predictive process monitoring, remaining time prediction, LSTM model, Deep Learning, Process Mining -
Jin-soo Kim, Kang-yoon Lee, Vol. 20, No. 6, pp. 137-142, Dec. 2019
10.7472/jksii.2019.20.6.137
Keywords: Photoplethysmography(PPG), Electrocardiogram(ECG), Abnormal event detection, SVM, LSTM